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Diffraction by Cylindrical Bodies with Periodic Axial Structuret 

BY RICHARD S. BEhl~ hl~I) ORVIL E. A. BOLDUAN$ 

DeTartment of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A. 

(Received 12 September 1949) 

The diffractions expected of representative cylindrical bodies with periodic axial density variations, 
but lacking regalar order over cross sections, are calculated herein. Three models are considered: 
(1) the smooth cylinder, whose radius is everywhere constant; (2) the corrugated cylinder, whose 
radius is a periodic function of position along the cylinder with the same period as the axial density 
variations; and (3) the compound cylinder, which is composed of thin, parallel, smooth cylinders 
displaced axially from perfect transverse matching of their identical axial density fluctuations. 

These models are readily distinguished by the characteristic ways in which their reciprocal-array 
disk diameters depend upon layer-line index: with the smooth cylinder disk diameter is independent 
of index; with the corrugated dlffractor diameters at different layer lines vary about a mean value; 
while with the compound model the diameters progressively enlarge with increasing index. These 
relations are of particular interest in connection with studies of the small-anglo diffraction of 
collagen fibrils. 

Introduction 

A number of the effects exhibited by the fibrous protein 
collagen at small diffraction angles suggest that  the 
constituent ultramicroscopic fibrils are order-deficient 
structures possessing unidirectional (axial) periodic 
variations in density (Bolduan & Bear, 1950). In order 
to facilitate more searching examination of the fibrillar 
organization the present discussion considers the dif- 
fraction problems offered by certain cylindrical models 
believed likely to bear some relation to the observed 
phenomena. 

The d~ffraction problems herein considered possess 
a certain amount of general interest, since few cases 
involving cylindrical distribution of matter have been 
described. Wrinch (1946) derived the Fourier transform 
of an assemblage of atoms with rotational symmetry 
about an axis, but not one in which periodic repetition 
of structure occurs along the axis. MacGillavry & 
Bruins (1948) presented the Patterson transforms 
generally applicable to fiber or rotation diagrams. 
Neither of these formulations is directly useful for the 
present purposes. 

k recent general discussion of the dit~raetion pheno- 
mena accompanying deficiency of order in fibrous 
systems (Bear & Bolduan, 1950) pointed out the value 
o£ familiarity with the properties of the disks repre- 
senting one-dlmensionally ordered structures in reci- 
procal space. The results obtained below contribute to 
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an understanding of the significance of such phenomena 
as variations in disk diameter with index, which are 
actually encolmtered with collagen specimens. 

The smooth-cylinder model  

The starting point is a treatment of the simplest pos- 
sible model consistent with the gross structure features 
of collagen fibrils as recognized from electron-micro- 
scope and small-angle diffraction studies. This involves 
determination of the diffraction expected of a cylinder 
of length L and radius R. Electron-density variations 
repeat many times, every b 0 distance, in the direction 
of the cylinder axis (y), but at any given level the density 
is considered to be uniform over the entire cross section 
of the fibril. Since the radius is constant at all levels, 
this particular model may be termed briefly the 
' smooth cylinder' model. While this could be developed 
as a special case of Wrinch's rotation-symmetrical 
system, it is desirable to outline the complete treatment 
in order to facilitate subsequent consideration of more 
complex situations. 

In Fig. 1 the unit vector s o (CO) represents the direc- 
tion of an X-ray beam incident at the angle 0 to the 
cylinder normal, which is drawn at C near one end of 
the fibril in the plane determined by the cylinder axis 
and s 0. The unit vector s (CP) extends toward P, the 
point at which diffracted intensity is to be registered. 
Locations in the cyinder are specified by the vector 
whose cylindrical co-ordinates r, ~k and y are stated 
with reference to the co-ordinate axes of the cylinder. 
At O is located the origin of reciprocal space, whose 
vector p * - - s - s  o has also cylindrical components r*, 
~* and y*, referred to axes which remain parallel to the 
corresponding ones of the originM diffracting cylinder. 
The sphere swept out by the possible positions for the 
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vector s is the sphere of reflection, which for small angles 
of diffraction becomes a p/ane of reflection normal to 
s o at 0 (cf. Bear & Bolduan, 1950). 

As is well known from diffraction theory, t  the in- 
tensity of radiation of wave-length A, scattered toward 
the end of the vector p* in the plane of reflection, is 

f p*)]dr ~ I p . = Io i  e N(p) exp [i21rP(O. 

where I o is the intensity of the beam incident at  C; 
i~ is the intensity scattered by a single electron for unit 
incident intensity, being at  small diffraction angles a 
function solely of certain universal physical constants; 
N(p) is the density of electrons in the element of 
cylinder volume dT located at  the end of p; and P is the 
reciprocal of A, the wave-length being scattered. In- 
tegration is over the entire volume of the cylinder. 

where Jo is the usual Bessel function of zero order. The 
integration with respect to r is then 

f; 27r rJo(27rPrr* ) dr = ~R 9 . JI(2~P Rr*) 
~PRr* 

The integration along the y axis is carried out accord- 
ing to standard practise by breaking the total cylinder 
length, L, into the number, M, of segments, each of 
length be, over which N(y) repeats (M = L/bo). This leads 
eventually to the intensity expression: 

. . . .  ,,~ [ 'Jl(2nP Rr*)7 " sin 2 (nPMb0 y*) 
= L J sin I F I s, 

where F = f : °N(y)  exp (i2nPyy*) dy, 

which may be said to be theflbril density structure factor. 

! 

', 

! 

Fig. 1. Construction for the problem of the diffraction by a smooth cylinder. The symbols are explained in the text. 

I t  is readily shown tha t  the scalar product 

•. p*=rr* cos ( ~ -  ~*) +yy*.  

Also, in the smooth-cylinder model electron density is 
to be a function only of y. Consequently the volume 
integral becomes 

f : N(y) exp (i27rPyy*) dy 

x r exp [i2rrPrr* cos (~ - ~*)] drd~z. 
J0 j0  

Since integration over ~ involves a complete cycle, the 
result is independent of ~* and yields 27rJo(27rPrr*), 

I" A number of the results of physical and mathematical 
theory are assumed herein. Relative to the diffraction theory, 
see, for example, Wrineh (194:6) and James (194:8). The 
integrals leading to or involving Bessel functions are discussed 
in standard works, such as Watson (194:4:). 

This intensity function is rotationally symmetrical 
about the Oy* axis of reciprocal space, since ~* does 
not appear. Maxima occur along the y* axis at  
y*=L~/bo, where k is an integer (diffraction order 
index) specifying each maximum. The reciprocal-space 
representation of the diffraction by the cylinder is, 
consequently, a series of 'disks '  which may be 
moved through the plane of reflection by tilting the 
specimen. 

In  most fiber problems the number M of unit seg- 
ments, coherently contributing to each disk and con- 
stituting the effective diffracting length of the cylinder, 
is large. Consequently, the term 

sin ~. (TrPMboy*)/sin 2 (1rPboy*) 

concentrates the intensity sharply near the central 
plane of each disk at  y*. Over the range of y* at  which 
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this term has appreciable value, the structure factor 
remains practically constant at  

F~:= N(v) exp (i2~kv) dv, 

where v is a co-ordinate of longitudinal position in the 
original cylinder, expressed now in fractions of the 
period b 0. 

One may  define a ' thickness'  for each disk as being 
the distance along Oy* between planes of constant y* 
at  which the intensity of the disk (for any r*) falls to 
haft its value at  the maxi~num central plane. In  order 
to determine this, one may make the transformation 
y* =y*  +6, in which e is a small departure from the 
y* at  which maximum intensity occurs. Under these 

conditions sin ~ (TrPMboy,)=sin ~ (TrPMboe) 

and sin s (TrPb0y*) # (IrPb0 e) s. 

Since on the central plane of the disk (at e = 0) 

sin ~. (lrPMb o e)/(TtPbo e) ~" = M s, 
a 'shape factor '  for distribution of intensity along Oy* 
relative to that  at the central plane is 

sin ~' (lrPMb oe) 
$I,~ = (TrPMboe)~ - e x p  [ -  (TrPMboe)s/Tr]. 

The exponential approximation is well known to be 
good for shape of an S~  : e plot and is exact for the area 
under such a curve. I t  is particularly convenient for 
practical applications, as is seen in the present one 
wherein the thickness of the disk as defined above 
becomes easily expressed as 

{2 ~/(- Tr ln O'5)}/~rPMbo. 
Note that  disk thickness is independent of k, which is 

a consequence of the fact that  structure was assumed 
to possess perfect periodicity along the cylinder axis. 
Any distortions from perfect repetition of segments 
would tend to make the effective number of segments 
contributing coherent scatter to the various disks 
depend on index, so tha t  disk thickness would be vari- 
able. In  actual fact, however, practical fibrous diffractors 
ekhibit such large M's for all disks that  at  small dif- 
fraction angles resolution of line shape along pat tern 
meridians is rarely accomplished. Under such con- 
ditions it is convenient to deal with disks whose inten- 
sity has been collapsed by projection on to their central 
planes. These may  be termed integrated intensity disks, 
and expressions for them may be immediately written 
after noting tha t  

MX 
M s ~ + ~o Sk~de = bo 

qJ  - -  o o  

is the factor which must replace 

sin s (lrPMb0y*)/sin ~ (lrPb0y*) 

in Its.. Consequently, the intensity per unit area of the 
integrated kth disk is 

lrR ~ , Jl(21rPRr*) ~ 12" I°i~M~( )[ --~-~7~r , "] ]F~ (1) 
I ~ ,  = bo  

As in considering disk thickness, one may also define 
a 'd iameter '  as the distance across a disk (through the 
center) between radial points at  which a shape factor 
has fallen to haft its central value. The radial shape 
factor in this case is 

S~r,=[_ ~ J - exp[-( ,PRr*)2],  (2) 

expressing the intensity at a radial position r* relative 
to that  at the disk center. The exponential approxima- 
tion is perfect for shape at  small r*, reasonable for 
general trend over all r*, and good for area under an 
S~r., r* plot, as can be readily shown graphically. The 
exponential approximation permits the expression of 
disk diameter as {2 ~/( - In 0.5)}/n~,R. 

As with thickness, the disk diameter is independent 
of index, corresponding to the fact tha t  the smooth- 
cylinder model assumes constant radius at  all y levels 
of the cylinder for coherent scatter to all disks. The disk 
diameter will not remain independent of k, however, ff 
this constancy of diffractor radius is disturbed. The 
following models illustrate this fact for other structures 
which may also be described as one-dimensionally 
ordered, and which have been chosen to show in as 
simple fashion as possible two distinct ways in which 
effective diffractor radii may be altered from the 
smooth cylinder case. 

The corrugated cylinder 

The simplest deviation from the smooth-cylinder model, 
which also seems of interest with respect to known facts 
regarding collagen fibril structure, is one introducing 
the periodic diametral depressions and elevations tha t  
can be seen in electron micrographs (see Schmitt & 
Gross, 1948). This 'corrugated' cylinder, whose radius 
variations are closely related to the periodic axial 
density fluctuations, is shown diagrammatically in 
Fig. 2(b). 

Determination of the diffraction by the corrugated 
cylinder is differentiated from the corresponding 
smooth-cylinder considerations by the circumstance 
that  the radius at  any y level of the fibril is a function 
of that  level. Consequently, at the stage of integration 
over cylinder length one finds the intensity expression: 

' - sins (lrPMb°y*) F' 
I~*=1oi~ sin2(~Pb0y,) I I s, 

where F ' ,  the total  structure factor for the unit of 
pat tern of the corrugated cylinder, is 

fo b* R 9. JI(2TrPRv r*) 7r ~ ~ N(y) exp (i27rPyy*) dy, 

the y subscript on R indicating the dependence of 
radius on level. 

The cases to which the model need be applied, judging 
from most existing electron micrographs, are those in 
which the departures of Rv from some average radius, 
R, are small. Consequently, ff R~=R+AR~,  where 
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ARv is the small positive or negative deviation in fibril 
radius, expansion by Taylor's series of the terms of the 
above integrand which are functions of Rv yields 

to the approximation which neglects all powers of 
ARv/R higher than the first. Substitution of this into 
the total structure factor, plus some simple rearrange- 
ment, produces 

F' " R 9[-Jl(2npRr*) G1, - "  L ~ F + Jo(2nPRr*) 

in which F is essentially the previous structure factor 
of the smooth-cylinder case, while G is a new one which 
carries largely the effects of the radius variations. When 
the y* positions for maximum intensity are noted to 
be the same as for the smooth cylinder, it becomes 
possible to express G as follows: 

f l AR~ 
Gk = N(v) -R-- exp (i21r/cv) dv, 

0 

which may be called the radius structure factor to dis- 
tinguish it from the previously defined density structure 
factor, F k. 

Other considerations regarding the corrugated 
cylinder are similar to those developed for the smooth 
cylinder. The final integrated intensity disk is found to 
have intensity spread over it according to 

Ioie M h ,  -2,21Jl(2npRr*) 9.. 
Ikr*-  bo tn-n ) ~ Fk + Jo(2nPRr*) Gk 

(3) 
E quation (3) indicates that  the disks of the corrugated 

cylinder may possess a variety of shapes ranging from 
that of a smooth cylinder (when [ Fk I>~l G~ i) to that  
caused largely by the radius variations (when 
[ F k ] < ] GI~ I)- In the latter case the shape of J0~(2nPRr*) 
is expected, in which there is a central maximum on 
the meridian and lesser lateral maxima to either side, 
the most prominent of which would be at nPRr* = 1.9. 
Although, because of complex structure of corrugated- 
cylinder disks, the concept of diameter for these may 
have no simple meaning, one notes that  the extent of 
disk over which maj or intensity can be spread is limited 
in the same way for all disks. Whether major intensity 
is applied close to or is somewhat spread from the 
meridional center depends on incidents of structure 
effective in determining the relative importances of the 
structure factors Fk and Gk. 

I t  is useful to consider, as a special case of the cor- 
rugated cylinder, one in which the radius variations 
furnish small perturbations on the diffraction effects 
of a nearly smooth cylinder, i.e. a situation in which 
generally I Gk I < [ F k  ], but the radius structure factor 
is not negli~ble. I t  is readily shown that 

s~, ,= 1 +4ck 2J~(~)/a J 

is the radial shape function for the disks of t he '  slightly 
corrugated' cylinder, where a is the common argument 
(2nPRr*) of the Bessel functions, and 

2ck = (g/f) cos (% -ws), 

g and f being the amplitudes, and wg and w s the phases, 
of the structure factors Gk and Fk respectively. In the 
approximations involved, ck is considered small com- 
pared to unity and may be either positive or negative 
depending on the structure-factor phases. 
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Fig. 2. Diagrammatic representations of the three cylindrical 

models (above) with their characteristic layer-line length 
variations (below): (a) for the smooth cylinder, (b) for the 
slightly corrugated cylinder, and (c) for the compound 
cylinder. In  actual pinhole diffraction patterns these simple 
length relationships may  be disguised somewhat by the 
varying intensities of layer lines produced by incidental 
structure-factor influences. The alternation of line lengths 
shown for the corrugated cylinder is only one of the possible 
ways tha t  lengths may  vary about a mean. 

At small a, 

[ J0(a) -  2Jl(a)/a]/[2Jl(a)/a ] # ae/8, 
and the following power-series approximation for the 
second factor of Sir. may be used: 

1 + (ck a2/2) ~-exp (cka212). 
I t  is thus possible to formulate a rough shape function 
for the slightly corrugated cylinder: 

S~r. = exp [ -  (nPRr*) ~ (1 - 2ck)], (4) 

in which the same exponential approximation for 
[2Jl(a)/a] 2 has been employed as with the smooth 
cylinder. 

Comparison of this result with equation (2) shows 
that, since the ck's may be either positive or negative, 
the various diameters of different disks in the cor- 
rugated cylinder case will fluctuate above and below the 
constant value expected of a smooth cylinder of the 
same average radius. 
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The compound cylindrical fibril 

A totally different way in which cylinder cross sections 
for coherent diffraction may be altered is encountered 
with a model in which the previous smooth cylinder is 
imagined to be divided into thin colnmnar elements 
(the subfibrillar 'filaments' of Schmitt & Gross (1948)) 
which are displaced axially out of perfect register across 
cylinder cross sections. Electron-microscope evidence 
for longitudinal cleavage of collagen fibrils and their 
dispersion into filaments by acetic acid lends support 
to the possibility of this general type of structure. 

To consider initially the simplest model of a com- 
pound cylindrical fibril it will be supposed to be made 
of many identical filaments in near register. The 
departures from perfect matching between filaments are 
supposed to be due to random minor displacements of 
the filaments as wholes in the direction of the fibril axis 
(see Fig. 2 (c)). The total cylinder is of radius R as before, 
while each filament has a radius R 0. I t  is also supposed 
that  R 0 is much smaller than R, so that  one may speak 
of a nearly uniform distribution of filaments in any 
fibril cross section. 

Each filament, ff independent of others, would 
diffract according to the smooth-cylinder equations 
developed previously. I t  is necessary, however, to take 
account of phase relations of the scattering by different 
filaments. This is done in the structure factor of the 
following equation: 

Zoo, I I 
where I ~ ,  is the integrated disk intensity for the com- 
pound fibril, Iou,  that  given above (equation (1) with 
R o in place of R) for a single smooth cylindrical filament, 
and F~r* is a structure factor taking account of the 
number and the arrangement of filaments relative to 
one another. 

For the sake of brevity the structure factor F[~. will 
not be derived here. Actually, because the axial dis- 
placement of filaments is statistical, only an average 
value of I F~r. I ~ can be calculated. This will be deter- 
mined on another occasion in connection with a more 
general model for a distorted compound fibril, of 
which the present one is a special case chosen for con- 
sideration here because of its simple relation to the 
smooth cylinder. 

I t  is found that  

,, 7rR~(l~crb/bo) ~" 
I F ~ ,  12= 27rR~[(lcTro.b/bo) 4 + (TrP Ror*)~] ~-' 

where ~b is a small displacement (root of the mean 
square value) introduced at random along positive or 
negative axial directions as one passes across the fibril 
from any one filament to any next neighbor. The 
correctness of this formulation will be apparent, quali- 
tatively at least, from the physical reasonableness of 
the results attained below for the effective diffractor 
radii of the compound fibril. 

I t  follows that  the average intensity of the in- 
tegrated disk is 

,, Io ie MATrR ~ ~rR~(l~crb/bo) 
I~r* = 2bo[(lcTro.b/bo)4 + (lrPRo r,)~]~ 

×L J IF,, (5) 
for the compound fibril. From this the radial shape 
factor is readily shown to be 

F 
 ir'=Ll+ J L J" 

I t  is convenient to employ the approximate ex- 
ponentiM form exp[-C(uPRor*)~/(]cTr(rb/bo) 4] for the 
first factor of this expression, where the approximation 
for shape is perfect at small r* when C = 1.5, or perfect 
for area (under a curve in which this factor is plotted 
as ordinate against r* as abscissa) when C = ¼7r. With 
exponentiM approximation employed also for the 
Bessel-function factor, one then finds 

C 

This equation readily discloses that  disk diameters 
expand with increase in b (see further below). 

Conclusion 
While the above development has occasionally neg- 
lected minor details of disk shape, the exponential 
functions of equations (2), (4) and (6) are sufficiently 
reliable for many purposes, serving as guides to the 
general influence of pertinent parameters on reciprocal- 
array disk shapes. 

The discussion to this point has emphasized disk 
diameters and their variation with index. In practical 
work one is more interested in obtaining information 
regarding the actual diffracting structure. I t  now be- 
comes possible to transfer attention to certain effective 
diffTactor radii which are reciprocally related to the 
disk diameters. 

Study of equations (2), (4) and (6) shows that they 
all have the common form 

S~ . - -exp  [ -  (nPRkr*)9].  ,(7) 

They are distinguished by possessing different expres- 
sions for the quantity Rk, as follows: 

R~= R (smooth cylinder), 

R~ = R ~/(1 - 2ck) - R(1 - ck) (slightly corrugated 

cylinder), 

" R°~]{C+ (blr~b/b°)4} (compound cylinder). Rk---- 
( l ¢ . ~ J b o )  ~ 

From the fact that  Rk in the smooth-cylinder case is 
directly the radius of the diffractor, it is suggested that  
Rk should be regarded in all cases as the effective radius 
of the diffractor for its kth disk. 

Physically this is reasonable. In the corrugated 
cylinder the effective radins varies about the average 
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cylinder radius, R, because of the positive and negative 
values possible for the ck parameters of structure. In 
the compound cylinder case, when/c (or the product 
/c~b) is sufficiently large R~ approaches R 0, in which case 
individual filaments are essentially diffracting in- 
dependently. One must keep in mind, however, that  
as/ca b approaches zero, leading essentially back to the 
smooth cylinder case, R~ should approach the relatively 
large value R but not become infinitely large as given 
by the equation. This difficulty is a result of an excessive 
upper limit (oo) assigned during a radial integration in 

' H the evaluation of ]F~,. 12 but  is easily avoided in 
practical cases by restricting application to layer lines 
of high index. 

R~ can be used generally wherever R occurs in the 
theory for the particular case of the smooth cylinder, 
with restriction required, however, to applications in- 
volving reciprocal-array disk shapes and dimensions. 
For example, disk diameters are generally calculable 
from {2~(- lnO'5) /nPRk} ,  which was derived above 
only for the smooth cylinder. On the other hand, R~ 
substituted for R everywhere in equation (1) does not 
lead to appropriate approximations of equations (3) 
and (5). 

In  actual studies one obtains experimental shape 
functions for a given specimen as follows: A given point 
of the kth disk is brought into the plane of reflection by 
a tilt  0 to a position whose co-ordinates in the reflection 
plane are ~ and ~k. As is apparent from Fig. 1, 

~k=y*/cosO. 

Also y*~ + r *~= ~ + (~.k, from which it follows, since 
y* = kh/bo, that  

r* = ~/{~ + (/cA/b0) 9" t a n  2 0}. 

When this value of r* is used in equation (7), one obtains 
the expression (useful under pinhole-camera condi- 
tions) indicating the way in which at  a given tilt, 0, 
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intensity should vary along the kth layer line as a 
function of ~, the angular departure from the meridional 
line. On the other hand, one may examine how intensity 
at  constant ~ on a given line depends upon tilt. The 
former application deals with 'line shape',  the latter 
with 'persistence of intensity with t i l t ' .  This program 
is an ideal one; actual methods will be detailed else- 
where in connection with a presentation of results of 
collagen studies. 

As illustration of phenomena to be expected of the 
three types of diffractor under consideration, Fig. 2 
indicates diagrammatically the diffraction patterns 
expected of them under the condition of zero tilt. Only 
relative line lengths, corresponding to intersections of 
disk diameters with the reflection plane, are shown. The 
distinctively different characters of these patterns 
suggest that  the models should be readily recognizable 
when encountered. In actual cases one sometimes finds 
combinations of these diffraction effects, but study of 
the observed line lengths (and similar quantities) in 
relation to these simple theoretical cases can suggest 
means for arriving at  a model tailored to fit the 
diffractor at hand. 
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The  diffuse sca t te r ing  o f  NaC1Oa. By M. S. AHMED and K. LONSDALE, Chemistry Department, University 
College, Gower Street, London W.C. 1, England. 

(Received 3 November 1949) 

In a recent paper (Garrido, 1948a; published in full in 
the Memorias de la Real Academia de ciencias exactas de 
Madrid (Garrido, 1948b)) the diffuse scattering regions 
surrounding the reciprocal-lattice points of NaC103 are 
deduced from a series of Laue photographs, and are 
alleged to show long protuberances along two cube-axis 
directions, resulting in a square cross. 

Sen (1949) has pointed out that these results conflict 
with calculations from the thermal vibration theory, and 
infers that the theory is thereby disproved. 

Ramachandran & Wooster (1950) have, however, 
repeated the measurements of diffuse scattering, for 
selected sections of reciprocal space, using the Geiger- 
counter method and very perfect NaC103 crystals; and 


